Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38657143

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of IPF patients and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single cell RNA sequencing (scRNA-seq), we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed down-regulation of genes related to lipid biosynthesis and fatty acid -oxidation in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs compared to the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs using immunofluorescence staining and flow cytometry. We further show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and peroxisome proliferator activated receptor gamma (PPARγ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in 3D organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured aged mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF.

3.
J Environ Manage ; 355: 120307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428178

RESUMO

Addressing global carbon inequality constitutes an important task for both international negotiations on climate-change mitigation and the achievement of sustainable development goals. Soaring international trade might become a vigorous modifier for reducing global carbon inequality through production reallocation and economic boosts in different countries. However, this effect remains largely unexplored, not only because of little awareness of the windfall benefits from international trade but also because of debates on quantifying global carbon inequality from both production- and consumption-based perspectives. To avoid incomplete implications from a single perspective, this study first adapted a producer-consumer shared responsibility to evaluate global carbon inequality using the technology-adjusted consumption-based accounting method for 189 countries from 2006 to 2016. A dynamic panel data model was developed to examine the different channels through which international trade affects global carbon inequality in developed and developing countries. The results demonstrate that even with increasing carbon emissions, less global carbon inequality was witnessed from 2006 to 2016. International trade plays an important role in reducing global carbon inequality, mostly by stimulating the economy and increasing household income in developing countries. However, production reallocation via international trade fails in reducing the emission responsibilities of developed countries, rendering this futile in alleviating global carbon inequality. Carbon leakage that transfers carbon-intensive production across borders can lead to this unintended result, and more stringent cross-border regulations such as the carbon border adjustment mechanism can be effective. This study not only highlights the pivotal role of international trade in reducing global carbon inequality but also the future direction of international cooperation on climate change mitigation in a globalized world.


Assuntos
Carbono , Comércio , Internacionalidade , Dióxido de Carbono , Mudança Climática , Desenvolvimento Econômico
4.
Plant Physiol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447074

RESUMO

The fruit neck is an important agronomic trait of cucumber (Cucumis sativus). However, the underlying genes and regulatory mechanisms involved in fruit neck development are poorly understood. We previously identified a cucumber yellow green peel (ygp) mutant, whose causal gene is MYB DOMAIN PROTEIN 36 (CsMYB36). This study showed that the ygp mutant exhibited a shortened fruit neck and repressed cell expansion in the fruit neck. Further functional analysis showed that CsMYB36 was also a target gene, and its expression was enriched in the fruit neck. Overexpression of CsMYB36 in the ygp mutant rescued shortened fruit necks. Furthermore, transcriptome analysis and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays revealed that CsMYB36 positively regulates the expression of an expansin-like A3 (CsEXLA3) in the fruit neck, which is essential for cell expansion. Yeast one-hybrid and dual-LUC assays revealed that CsMYB36 regulates fruit neck elongation by directly binding to the promoter of CsEXLA3. Collectively, these findings demonstrate that CsMYB36 is an important gene in the regulation of fruit neck length in cucumber plants.

5.
Curr Res Toxicol ; 6: 100155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379848

RESUMO

Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.

6.
Plant Biotechnol J ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261466

RESUMO

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.

7.
Stem Cell Res Ther ; 14(1): 356, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072976

RESUMO

Breast cancer (BC) is one of the diseases with the highest female mortality rates in the world and is closely related to breast cancer stem cells (BCSCs). Conventional breast cancer chemotherapy drugs target noncancer stem cells (non-CSCs), while cancer stem cells (CSCs) can still survive, which is an important reason for breast cancer drug resistance and local recurrence or distant metastasis. How to eradicate BCSCs while killing BCs is the key factor to improve the effect, and it is also an important scientific problem to be solved urgently. Therefore, targeted BCSC therapy has become a research hotspot. Interestingly, the emergence of nanotechnology provides a new idea for targeting BCSCs. This study summarizes the current application status of nanomaterials in targeting BCSCs, and attempts to construct a new type of lipid nanoparticle (LNP) that can target BCSCs through mRNA, providing a new idea for the treatment of BC.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Medicina de Precisão , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/patologia
8.
Heliyon ; 9(12): e22734, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125441

RESUMO

Background: The correlation between FOXM1 and KIF20A has not been revealed in clear cell renal cell carcinoma (ccRCC). Methods: Public data was downloaded from The Cancer Genome Atlas (TCGA) database. R software was utilized for the execution of bioinformatic analysis. The expression levels of specific molecules (mRNA and protein) were detected using real-time quantitative PCR (qRT-PCR) and Western blot assays. The capacity of cell growth was assessed by employing CCK8 and colony formation assay. Cell invasion and migration ability were assessed using transwell assay. Results: In our study, we illustrated the association between FOXM1 and KIF20A. Our results indicated that both FOXM1 and KIF20A were associated with poor prognosis and clinical performance. The malignant characteristics of ccRCC cells can be significantly suppressed by inhibiting FOXM1 and KIF20A, as demonstrated by in vitro experiments. Moreover, we found that FOXM1 can upregulate KIF20A. Then, EMT signaling was identified as the underlying pathway FOXM1 and KIF20A are involved. WB results indicated that FOXM1/KIF20A axis can activate EMT signaling. Moreover, we noticed that FOXM1 and KIF20A can affect the immunotherapy response and immune microenvironment of ccRCC patients. Conclusions: Our results identified the role of the FOXM1/KIF20A axis in ccRCC progression and immunotherapy, making it the underlying target for ccRCC.

9.
PLoS One ; 18(11): e0295281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033117

RESUMO

China has limited arable land area, and its output value is increased with enhanced agricultural inputs such as machinery, irrigation, fertilizers, and pesticides. However, this mode is accompanied by an increase in agricultural carbon emissions. With the aim to further examine the driving effect of scientific and technological innovation on economic growth and green agriculture, this study uses the Solow growth model coupled with the Cobb-Douglas production function and vector autoregressive models. Then, the agricultural scientific and technological innovation capacity in Guangdong Province during 2006-2020 is evaluated by using the contribution rate of agricultural scientific and technological progress (ASTP) as the assessment index. In addition, the carbon footprints of green agricultural indexes such as machinery, irrigation, fertilizers, and pesticides are measured to analyze the relationship between green agriculture and agricultural scientific and technological innovation capacity. Results demonstrate the gradual increase in the contribution rate of ASTP in Guangdong Province. During the 11th, 12th, and 13th Five-Year Plan periods, the rates were 65.09%, 65.94%, and 70.40%, respectively, indicating that the agricultural scientific and technological innovation ability constantly improved. Among the indexes of green agriculture, the carbon footprints of machinery have a significant impact on agricultural scientific and technological innovation, which is quickly transformed into machinery. Such innovation requires the driving force of science and technology itself, which have relatively significant and rapid effects. On the basis of the results, corresponding policy suggestions are proposed: increasing investments in scientific and technological innovation in the agricultural field, vigorously developing new energy-saving and emission reduction products and processes for fertilizers, and increasing the research and promotion of agricultural machinery. The proposed method provides good prospects for the development of agricultural production towards mechanization, intelligence, efficiency, and greenness.


Assuntos
Invenções , Praguicidas , Fertilizantes , Agricultura , Tecnologia , Desenvolvimento Econômico , China
10.
Appl Environ Microbiol ; 89(10): e0109323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815356

RESUMO

Climate change, microbial endophytes, and local plants can affect the establishment and expansion of invasive species, yet no study has been performed to assess these interactions. Using a growth chamber, we integrated the belowground (rhizosphere soils) and aboveground (mixture of mature leaf and leaf litter) microbiota into an experimental framework to evaluate the impacts of four native plants acting as microbial inoculation sources on endophyte assembly and growth of the invasive plant Ageratina adenophora in response to drought stress and temperature change. We found that fungal and bacterial enrichment in the leaves and roots of A. adenophora exhibited distinct patterns in response to climatic factors. Many fungi were enriched in roots in response to high temperature and drought stress; in contrast, many bacteria were enriched in leaves in response to low temperature and drought stress. Inoculation of microbiota from phylogenetically close native plant species (i.e., Asteraceae Artemisia atrovirens) causes the recipient plant A. adenophora (Asteraceae) to enrich dominant microbial species from inoculation sources, which commonly results in a lower dissimilar endophytic microbiota and thus produces more negative growth effects when compared to non-Asteraceae inoculations. Drought, microbial inoculation source, and temperature directly impacted the growth of A. adenophora. Both drought and inoculation also indirectly impacted the growth of A. adenophora by changing the root endophytic fungal assembly. Our data indicate that native plant identity can greatly impact the endophyte assembly and host growth of invasive plants, which is regulated by drought and temperature.IMPORTANCEThere has been increasing interest in the interactions between global changes and plant invasions; however, it remains to quantify the role of microbial endophytes in plant invasion with a consideration of their variation in the root vs leaf of hosts, as well as the linkages between microbial inoculations, such as native plant species, and climatic factors, such as temperature and drought. Our study found that local plants acting as microbial inoculants can impact fungal and bacterial enrichment in the leaves and roots of the invasive plant Ageratina adenophora and thus produce distinct growth effects in response to climatic factors; endophyte-mediated invasion of A. adenophora is expected to operate more effectively under favorable moisture. Our study is important for understanding the interactions between climate change, microbial endophytes, and local plant identity in the establishment and expansion of invasive species.


Assuntos
Ageratina , Asteraceae , Endófitos/fisiologia , Plantas/microbiologia , Ageratina/fisiologia , Espécies Introduzidas , Bactérias , Raízes de Plantas/microbiologia , Microbiologia do Solo
11.
Heliyon ; 9(10): e20838, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867909

RESUMO

Background: In recent years, fracture liaison services (FLS) have been applied for hip fractures; however, their effectiveness remains uncertain. Objective: To evaluate the effectiveness of FLS in patients with hip fractures. Design: A systematic review and meta-analysis of randomized controlled trials. Data sources: Embase, PubMed, Cochrane Library, Ebsco, Ovid, Web of Science, Medline, CNKI, Wangfang, and Vip were searched from their date of inception to March 2023. Two researchers screened the literature based on the inclusion and exclusion criteria, evaluated the quality, extracted data, and conducted a meta-analysis using ReviewManager 5.4. Results: After screening, 12 randomised controlled trials (RCT) including 2136 patients were used in the meta-analysis. The primary outcomes were hip function rate of recurrent fracture, medication adherence, and degree of weakness. FLS improved hip function in patients with hip fractures [MD = 9.37, 95 % CI (7.69, 11.06), P < 0.0001], P < 0.0001], medication adherence [OR = 10.59, 95 % CI (1.64, 68.41), P<0.0001], degree of weakness [MD = -1.45, 95%CI (-1.68,-1.23), P<0.0001], and reduced the rate of recurrent fractures [OR = 0.60, 95 % CI (0.44, 0.82). Conclusion: Implementation of the FLS management model was beneficial for patients with hip fractures. It can positively impact the prognosis of patients with hip fractures by improving hip function, reducing the rate of recurrent fractures, and improving medication adherence and degree of weakness.

12.
BMC Gastroenterol ; 23(1): 344, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798726

RESUMO

BACKGROUND AND OBJECTIVE: For high-risk elderly patients with chronic diseases, endoscopic stone removal for large common bile duct stones is associated with a high risk of adverse events and incomplete stone removal. The aim of this study was to investigate whether the treatment strategy of short-term biliary plastic stent placement followed by elective endoscopic stone removal is more effective and safer than immediate endoscopic stone removal. METHODS: The data of 262 high-risk elderly patients who received endoscopic retrograde cholangiopancreatography (ERCP) for large common bile duct (CBD) stones from 2017 to 2022 were retrospectively analyzed. The patients were divided into group A (immediate stone removal) and group B (stent drainage + elective stone removal). The baseline data of the 2 groups were matched 1:1 by propensity score matching. The stone clearance rate, ERCP procedure time, total hospital stay, and procedure-related adverse events were compared between the matched groups. In group B, stone size before and after stent placement, hospital stay, procedure time and adverse events of two ERCPs were compared. RESULTS: A total of 57 pairs of patients were successfully matched between the 2 groups. The stone clearance rate in group B was higher than that in group A (89.5% vs. 75.3, P = 0.049). The total hospital stay in group B was longer than that in group A (11.86 ± 3.912 d vs. 19.14 ± 3.176 d, P<0.001). The total adverse event rate in group A was higher than that in group B (29.8% vs. 12.3%, P = 0.005). The incidence of cholangitis/cholecystitis after ERCP was significantly higher in group A than in group B (7.0% vs. 0.9% P = 0.029). There was no significant difference in the incidence of post-ERCP pancreatitis, bleeding, pneumonia, and cardio-cerebrovascular events between the 2 groups. There were no perforation cases in either group. After plastic biliary stent placement in group B, the stone size was significantly smaller than before stent placement (1.59 ± 0.544 cm vs. 1.95 ± 0.543 cm, P < 0.001), and there was no significant difference in the total adverse event incidence between the two ERCP procedures (18.8% vs. 10.9%, P = 0.214). CONCLUSION: For high-risk elderly patients with large CBD stones, the treatment strategy involving temporary placement of plastic stent and elective endoscopic stone removal is safer and more effective than immediate stone removal.


Assuntos
Coledocolitíase , Cálculos Biliares , Humanos , Idoso , Estudos Retrospectivos , Ducto Colédoco , Resultado do Tratamento , Cálculos Biliares/cirurgia , Cálculos Biliares/etiologia , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Esfinterotomia Endoscópica/efeitos adversos , Coledocolitíase/cirurgia , Coledocolitíase/etiologia
13.
J Bone Oncol ; 42: 100498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37670740

RESUMO

Objective: The objective of this study was to investigate the use of contrast-enhanced magnetic resonance imaging (CE-MRI) combined with radiomics and deep learning technology for the identification of spinal metastases and primary malignant spinal bone tumor. Methods: The region growing algorithm was utilized to segment the lesions, and two parameters were defined based on the region of interest (ROI). Deep learning algorithms were employed: improved U-Net, which utilized CE-MRI parameter maps as input, and used 10 layers of CE images as input. Inception-ResNet model was used to extract relevant features for disease identification and construct a diagnosis classifier. Results: The diagnostic accuracy of radiomics was 0.74, while the average diagnostic accuracy of improved U-Net was 0.98, respectively. the PA of our model is as high as 98.001%. The findings indicate that CE-MRI based radiomics and deep learning have the potential to assist in the differential diagnosis of spinal metastases and primary malignant spinal bone tumor. Conclusion: CE-MRI combined with radiomics and deep learning technology can potentially assist in the differential diagnosis of spinal metastases and primary malignant spinal bone tumor, providing a promising approach for clinical diagnosis.

15.
Small ; 19(50): e2303929, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621028

RESUMO

Both LiFePO4 (LFP) and NaFePO4 (NFP) are phosphate polyanion-type cathode materials, which have received much attention due to their low cost and high theoretical capacity. Substitution of manganese (Mn) elements for LFP/NFP materials can improve the electrochemical properties, but the connection between local structural changes and electrochemical behaviors after Mn substitution is still not clear. This study not only achieves improvements in energy density of LFP and cyclic stability of NFP through Mn substitution, but also provides an in-depth analysis of the structural evolutions induced by the substitution. Among them, the substitution of Mn enables LiFe0.5 Mn0.5 PO4 to achieve a high energy density of 535.3 Wh kg-1 , while NaFe0.7 Mn0.3 PO4 exhibits outstanding cyclability with 89.6% capacity retention after 250 cycles. Specifically, Mn substitution broadens the ion-transport channels, improving the ion diffusion coefficient. Moreover, LiFe0.5 Mn0.5 PO4 maintains a more stable single-phase transition during the charge/discharge process. The transition of NaFe0.7 Mn0.3 PO4 to the amorphous phase is avoided, which can maintain structural stability and achieve better electrochemical performance. With systematic analysis, this research provides valuable guidance for the subsequent design of high-performance polyanion-type cathodes.

16.
J Gene Med ; 25(12): e3562, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392008

RESUMO

Accumulating research findings have shown that circular RNAs (circRNAs) play an indispensable role in tumorigenesis and tumor progression. The current study aimed to explore the role and modulatory mechanism of hsa_circ_0003596 in clear cell renal cell carcinoma (ccRCC). Quantitative real-time polymerase chain reaction was adopted to detect the expression of hsa_circ_0003596 in ccRCC tissue and cell lines. 5-Ethynyl-2'-deoxyuridine, cell counting kit 8 and the colony formation assay were utilized to assess the proliferation potential of the ccRCC cells. Transwell along with wound healing assays were adopted to quantify infiltration coupled with the migration potential of the cells. The current research study found that the circRNA hsa_circ_0003596 was overexpressed in ccRCC tissue and cell lines. Further, result showed that hsa_circ_0003596 was associated with distant metastasis of renal cancer. Notably, the knockdown of hsa_circ_0003596 can lower the proliferation, infiltration and migration potential of ccRCC cells. The results of in vivo experiments found that the reduction of hsa_circ_0003596 significantly hampered the growth of tumors in mice. In addition, it was evident that hsa_circ_0003596 acts as a "molecular sponge" for miR-502-5p to upregulate the expression of the microRNA-502-5p (miR-502-5p) target insulin-like growth factor 1 (IGF1R). Furthermore, it was found that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling was the downstream cascade of hsa_circ_0003596/miR-502-5p/IGF1R cascade, which is partly responsible for the cancer-promoting effect. Overall, the results of the present study showed that hsa_circ_0003596 facilitated the proliferation, infiltration and migration of ccRCC through the miR-502-5p/IGF1R/PI3K/AKT axis. Therefore, it was evident that hsa_circ_0003596 can serve as a possible biomarker and therapeutic target against ccRCC.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , MicroRNAs , Animais , Camundongos , Carcinoma de Células Renais/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Renais/genética , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
17.
Discov Oncol ; 14(1): 123, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395858

RESUMO

BACKGROUND: Esophageal cancer is one of the most common malignant tumors in the world, which is characterized by poor prognosis, aggressiveness, and poor survival. Mucin 13 (MUC13) is a member of the membrane-bound mucin and located on chromosome 3q21.2 and consists of α and ß subunits. It has been found that MUC13 is overexpressed in a variety of tumor cells and acts a vital role in the invasiveness and malignant progression of several types of tumors. However, the role and regulatory mechanism of MUC13 in the progression of esophageal cancer remain unclear. METHODS: The expression level of MUC13 was detected in 15 esophageal cancer tissues and 15 pairs of adjacent nontumor tissues by immunohistochemistry (IHC). In addition, the expression of MUC13 mRNA level in human esophageal cancer cell lines (EC9706 and ECA109 and TE-1) was measured by qRT-PCR. In vitro, after silencing MUC13 with lentiviral interference technology, CCK8 assay, clone formation assay, and flow cytometry were applied to investigate the proliferation activity, clone formation ability and anti-apoptosis ability of EC9706 and ECA109 cells. The tumor xenograft growth assay was used to confirm the influence of MUC13 knockdown on the growth of esophageal tumors in vivo. The qRT-PCR assay and western blot experiments were taken to study the mechanism of MUC13 regulating the proproliferation and antiapoptotic of esophageal cancer. RESULTS: The results showed that MUC13 was overexpressed in esophageal cancer tissues and cell lines (EC9706 and ECA109 and TE-1), especially in EC9706 and ECA109 cells, but low expressed in human esophageal epithelial cell line (HEEC). Next, silencing MUC13 inhibits proliferation, blocks cell cycle progression, and promotes cell apoptosis in vitro, and restrains the growth of esophageal cancer tissues in vivo. Finally, MUC13 affects the proproliferation and antiapoptotic by regulating the expression of GLANT14, MUC3A, MUC1, MUC12, and MUC4 that closely related to O-glycan process. CONCLUSIONS: This study proved that MUC13 is an important molecule that regulates the O-glycan process and then affects the progress of esophageal cancer. MUC13 may be a novel therapeutic target for patients with esophageal cancer.

18.
Nano Lett ; 23(14): 6681-6688, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440609

RESUMO

The initial Na loss limits the theoretical specific capacity of cathodes in Na-ion full cell applications, especially for Na-deficient P2-type cathodes. In this study, we propose a presodiation strategy for cathodes to compensate for the initial Na loss in Na-ion full cells, resulting in a higher specific capacity and a higher energy density. By employing an electrochemical presodiation approach, we inject 0.32 excess active Na into P2-type Na0.67Li0.1Fe0.37Mn0.53O2 (NLFMO), aiming to compensate for the initial Na loss in hard carbon (HC) and the inherent Na deficiency of NLFMO. The structure of the NLFMO cathode converts from P2 to P'2 upon active Na injection, without affecting subsequent cycles. As a result, the HC||NLFMOpreNa full cell exhibits a specific capacity of 125 mAh/g, surpassing the value of 61 mAh/g of the HC||NLFMO full cell without presodiation due to the injected active Na. Moreover, the presodiation effect can be achieved through other engineering approaches (e.g., Na-metal contact), suggesting the scalability of this methodology.

19.
Int J Dermatol ; 62(9): 1170-1175, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37350436

RESUMO

BACKGROUND: Nail apparatus melanoma is a malignant tumor with a high incidence in Chinese melanoma patients. Slow Mohs micrographic surgery is an emerging technique for treating nail apparatus melanoma in situ (NAMIS). OBJECTIVE: This study evaluated the efficacy and safety of slow Mohs micrographic surgery for treating NAMIS. METHODS: Patients were enrolled in this retrospective study and treated in a single center from October 1, 2016, to June 30, 2022. Each patient underwent standard slow Mohs micrographic surgery, and follow-up was regularly conducted at clinics. RESULTS: Ten patients were enrolled in the study. Two patients underwent one Mohs stage, seven underwent two Mohs stages, and one underwent seven Mohs stages. The resection margin ranged from 5 to 25 mm. No severe complications were reported in the treatment, and recurrence of NAMIS was not observed during the follow-up period. CONCLUSION: Slow Mohs micrographic surgery is a valuable surgical method to treat NAMIS that preserves digit function and can be well tolerated by patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Estudos Retrospectivos , Cirurgia de Mohs/efeitos adversos , Melanoma/cirurgia , Melanoma/patologia , Neoplasias Cutâneas/cirurgia , Neoplasias Cutâneas/patologia , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/cirurgia
20.
Artigo em Inglês | MEDLINE | ID: mdl-37289606

RESUMO

Bone Age (BA) is reckoned to be closely associated with the growth and development of teenagers, whose assessment highly depends on the accurate extraction of the reference bone from the carpal bone. Being uncertain in its proportion and irregular in its shape, wrong judgment and poor average extraction accuracy of the reference bone will no doubt lower the accuracy of Bone Age Assessment (BAA). In recent years, machine learning and data mining are widely embraced in smart healthcare systems. Using these two instruments, this paper aims to tackle the aforementioned problems by proposing a Region of Interest (ROI) extraction method for wrist X-ray images based on optimized YOLO model. The method combines Deformable convolution-focus (Dc-focus), Coordinate attention (Ca) module, Feature level expansion, and Efficient Intersection over Union (EIoU) loss all together as YOLO-DCFE. With the improvement, the model can better extract the features of irregular reference bone and reduce the potential misdiscrimination between the reference bone and other similarly shaped reference bones, improving the detection accuracy. We select 10041 images taken by professional medical cameras as the dataset to test the performance of YOLO-DCFE. Statistics show the advantages of YOLO-DCFE in detection speed and high accuracy. The detection accuracy of all ROIs is 99.8 %, which is higher than other models. Meanwhile, YOLO-DCFE is the fastest of all comparison models, with the Frames Per Second (FPS) reaching 16.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...